There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{x}{(100 + x)})}{(\frac{\frac{7}{10}x}{(100 + \frac{7}{10}x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(x + 100)} + \frac{\frac{1000}{7}}{(x + 100)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(x + 100)} + \frac{\frac{1000}{7}}{(x + 100)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 100)^{2}})x + \frac{1}{(x + 100)} + \frac{1000}{7}(\frac{-(1 + 0)}{(x + 100)^{2}})\\=& - \frac{x}{(x + 100)^{2}} - \frac{1000}{7(x + 100)^{2}} + \frac{1}{(x + 100)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !