There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sin(\frac{π{e}^{x}}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(\frac{1}{2}π{e}^{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(\frac{1}{2}π{e}^{x})\right)}{dx}\\=&cos(\frac{1}{2}π{e}^{x})*\frac{1}{2}π({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&\frac{π{e}^{x}cos(\frac{1}{2}π{e}^{x})}{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{π{e}^{x}cos(\frac{1}{2}π{e}^{x})}{2}\right)}{dx}\\=&\frac{π({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos(\frac{1}{2}π{e}^{x})}{2} + \frac{π{e}^{x}*-sin(\frac{1}{2}π{e}^{x})*\frac{1}{2}π({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{2}\\=&\frac{π{e}^{x}cos(\frac{1}{2}π{e}^{x})}{2} - \frac{π^{2}{e}^{(2x)}sin(\frac{1}{2}π{e}^{x})}{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !