There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x + 1){ln(x)}^{4} - 4arctan(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln^{4}(x) + ln^{4}(x) - 4arctan(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln^{4}(x) + ln^{4}(x) - 4arctan(x)\right)}{dx}\\=&ln^{4}(x) + \frac{x*4ln^{3}(x)}{(x)} + \frac{4ln^{3}(x)}{(x)} - 4(\frac{(1)}{(1 + (x)^{2})})\\=&ln^{4}(x) + 4ln^{3}(x) + \frac{4ln^{3}(x)}{x} - \frac{4}{(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !