There are 1 questions in this calculation: for each question, the 7 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 7th\ derivative\ of\ function\ ln(1 + x + {x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x + x^{2} + 1)\\\\ &\color{blue}{The\ 7th\ derivative\ of\ function:} \\=&\frac{92160x^{7}}{(x + x^{2} + 1)^{7}} + \frac{322560x^{6}}{(x + x^{2} + 1)^{7}} - \frac{161280x^{5}}{(x + x^{2} + 1)^{6}} + \frac{483840x^{5}}{(x + x^{2} + 1)^{7}} - \frac{403200x^{4}}{(x + x^{2} + 1)^{6}} + \frac{403200x^{4}}{(x + x^{2} + 1)^{7}} + \frac{80640x^{3}}{(x + x^{2} + 1)^{5}} + \frac{201600x^{3}}{(x + x^{2} + 1)^{7}} - \frac{403200x^{3}}{(x + x^{2} + 1)^{6}} - \frac{201600x^{2}}{(x + x^{2} + 1)^{6}} + \frac{60480x^{2}}{(x + x^{2} + 1)^{7}} + \frac{120960x^{2}}{(x + x^{2} + 1)^{5}} - \frac{10080x}{(x + x^{2} + 1)^{4}} - \frac{50400x}{(x + x^{2} + 1)^{6}} + \frac{60480x}{(x + x^{2} + 1)^{5}} + \frac{10080x}{(x + x^{2} + 1)^{7}} - \frac{5040}{(x + x^{2} + 1)^{4}} + \frac{10080}{(x + x^{2} + 1)^{5}} - \frac{5040}{(x + x^{2} + 1)^{6}} + \frac{720}{(x + x^{2} + 1)^{7}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !