There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (3x + 4)(2x + 1) - (3x + 4)(2x + 1){\frac{1}{(2x + 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6x^{2} + 11x - \frac{6x^{2}}{(2x + 1)^{2}} - \frac{11x}{(2x + 1)^{2}} - \frac{4}{(2x + 1)^{2}} + 4\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6x^{2} + 11x - \frac{6x^{2}}{(2x + 1)^{2}} - \frac{11x}{(2x + 1)^{2}} - \frac{4}{(2x + 1)^{2}} + 4\right)}{dx}\\=&6*2x + 11 - 6(\frac{-2(2 + 0)}{(2x + 1)^{3}})x^{2} - \frac{6*2x}{(2x + 1)^{2}} - 11(\frac{-2(2 + 0)}{(2x + 1)^{3}})x - \frac{11}{(2x + 1)^{2}} - 4(\frac{-2(2 + 0)}{(2x + 1)^{3}}) + 0\\=&12x + \frac{24x^{2}}{(2x + 1)^{3}} - \frac{12x}{(2x + 1)^{2}} + \frac{44x}{(2x + 1)^{3}} + \frac{16}{(2x + 1)^{3}} - \frac{11}{(2x + 1)^{2}} + 11\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !