There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a{e}^{(b{(x - c)}^{2})}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a{e}^{(-2bxc + bx^{2} + bc^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{e}^{(-2bxc + bx^{2} + bc^{2})}\right)}{da}\\=&{e}^{(-2bxc + bx^{2} + bc^{2})} + a({e}^{(-2bxc + bx^{2} + bc^{2})}((0 + 0 + 0)ln(e) + \frac{(-2bxc + bx^{2} + bc^{2})(0)}{(e)}))\\=&{e}^{(-2bxc + bx^{2} + bc^{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !