Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{a}^{{x}^{2} - 2ax + 1 - 2{a}^{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{a}^{x^{2} - 2ax - 2a^{2} + 1}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{a}^{x^{2} - 2ax - 2a^{2} + 1}\right)}{dx}\\=&(\frac{(\frac{(2x - 2a + 0 + 0)}{(x^{2} - 2ax - 2a^{2} + 1)} - \frac{(0)log_{a}^{x^{2} - 2ax - 2a^{2} + 1}}{(a)})}{(ln(a))})\\=&\frac{2x}{(x^{2} - 2ax - 2a^{2} + 1)ln(a)} - \frac{2a}{(x^{2} - 2ax - 2a^{2} + 1)ln(a)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return