There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{cos(2)xsin(4)xxtan(5)xsec(5)x}{tan(7)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{5}sin(4)cos(2)tan(5)sec(5)}{tan(7)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{5}sin(4)cos(2)tan(5)sec(5)}{tan(7)}\right)}{dx}\\=&\frac{5x^{4}sin(4)cos(2)tan(5)sec(5)}{tan(7)} + \frac{x^{5}cos(4)*0cos(2)tan(5)sec(5)}{tan(7)} + \frac{x^{5}sin(4)*-sin(2)*0tan(5)sec(5)}{tan(7)} + \frac{x^{5}sin(4)cos(2)*-sec^{2}(7)(0)tan(5)sec(5)}{tan^{2}(7)} + \frac{x^{5}sin(4)cos(2)sec^{2}(5)(0)sec(5)}{tan(7)} + \frac{x^{5}sin(4)cos(2)tan(5)sec(5)tan(5)*0}{tan(7)}\\=&\frac{5x^{4}sin(4)cos(2)tan(5)sec(5)}{tan(7)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !