Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2 - {x}^{3}){\frac{1}{(x - 1)}}^{3} + \frac{(3{x}^{2})}{(2{(x - 1)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x^{3}}{(x - 1)^{3}} + \frac{\frac{3}{2}x^{2}}{(x - 1)^{2}} + \frac{2}{(x - 1)^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x^{3}}{(x - 1)^{3}} + \frac{\frac{3}{2}x^{2}}{(x - 1)^{2}} + \frac{2}{(x - 1)^{3}}\right)}{dx}\\=& - (\frac{-3(1 + 0)}{(x - 1)^{4}})x^{3} - \frac{3x^{2}}{(x - 1)^{3}} + \frac{3}{2}(\frac{-2(1 + 0)}{(x - 1)^{3}})x^{2} + \frac{\frac{3}{2}*2x}{(x - 1)^{2}} + 2(\frac{-3(1 + 0)}{(x - 1)^{4}})\\=&\frac{3x^{3}}{(x - 1)^{4}} - \frac{6x^{2}}{(x - 1)^{3}} + \frac{3x}{(x - 1)^{2}} - \frac{6}{(x - 1)^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return