There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{(-3x + 4)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(-3x + 4)}\right)}{dx}\\=&({e}^{(-3x + 4)}((-3 + 0)ln(e) + \frac{(-3x + 4)(0)}{(e)}))\\=&-3{e}^{(-3x + 4)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -3{e}^{(-3x + 4)}\right)}{dx}\\=&-3({e}^{(-3x + 4)}((-3 + 0)ln(e) + \frac{(-3x + 4)(0)}{(e)}))\\=&9{e}^{(-3x + 4)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !