Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({a}^{2} - 2ax)}{({x}^{2} + {a}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2ax}{(x^{2} + a^{2})} + \frac{a^{2}}{(x^{2} + a^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2ax}{(x^{2} + a^{2})} + \frac{a^{2}}{(x^{2} + a^{2})}\right)}{dx}\\=& - 2(\frac{-(2x + 0)}{(x^{2} + a^{2})^{2}})ax - \frac{2a}{(x^{2} + a^{2})} + (\frac{-(2x + 0)}{(x^{2} + a^{2})^{2}})a^{2} + 0\\=&\frac{4ax^{2}}{(x^{2} + a^{2})^{2}} - \frac{2a^{2}x}{(x^{2} + a^{2})^{2}} - \frac{2a}{(x^{2} + a^{2})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return