There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{x}{(x - 1)})sqrt(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xsqrt(x)}{(x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xsqrt(x)}{(x - 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 1)^{2}})xsqrt(x) + \frac{sqrt(x)}{(x - 1)} + \frac{x*\frac{1}{2}}{(x - 1)(x)^{\frac{1}{2}}}\\=&\frac{-xsqrt(x)}{(x - 1)^{2}} + \frac{sqrt(x)}{(x - 1)} + \frac{x^{\frac{1}{2}}}{2(x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !