There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 + {cos(x)}^{2})cos(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(cos^{2}(x) + 1)cos(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(cos^{2}(x) + 1)cos(2)\right)}{dx}\\=&ln(cos^{2}(x) + 1)cos(2) + \frac{x(-2cos(x)sin(x) + 0)cos(2)}{(cos^{2}(x) + 1)} + xln(cos^{2}(x) + 1)*-sin(2)*0\\=&ln(cos^{2}(x) + 1)cos(2) - \frac{2xsin(x)cos(x)cos(2)}{(cos^{2}(x) + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !