There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(cos(x))}^{(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {cos(x)}^{(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {cos(x)}^{(2x)}\right)}{dx}\\=&({cos(x)}^{(2x)}((2)ln(cos(x)) + \frac{(2x)(-sin(x))}{(cos(x))}))\\=&2{cos(x)}^{(2x)}ln(cos(x)) - \frac{2x{cos(x)}^{(2x)}sin(x)}{cos(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !