There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(1 + sqrt(x))}{(1 - sqrt(x))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})\right)}{dx}\\=&\frac{((\frac{-(\frac{-\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)}{(-sqrt(x) + 1)^{2}})sqrt(x) + \frac{\frac{1}{2}}{(-sqrt(x) + 1)(x)^{\frac{1}{2}}} + (\frac{-(\frac{-\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)}{(-sqrt(x) + 1)^{2}}))}{(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})}\\=&\frac{sqrt(x)}{2(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})(-sqrt(x) + 1)^{2}x^{\frac{1}{2}}} + \frac{1}{2(-sqrt(x) + 1)(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})x^{\frac{1}{2}}} + \frac{1}{2(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})(-sqrt(x) + 1)^{2}x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !