There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(3x){e}^{(-2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(-2x)}sin(3x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(-2x)}sin(3x)\right)}{dx}\\=&({e}^{(-2x)}((-2)ln(e) + \frac{(-2x)(0)}{(e)}))sin(3x) + {e}^{(-2x)}cos(3x)*3\\=&-2{e}^{(-2x)}sin(3x) + 3{e}^{(-2x)}cos(3x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !