There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{3} - \frac{3}{x} - sin(6)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - xsin(6) - \frac{3}{x} + x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - xsin(6) - \frac{3}{x} + x^{3}\right)}{dx}\\=& - sin(6) - xcos(6)*0 - \frac{3*-1}{x^{2}} + 3x^{2}\\=& - sin(6) + \frac{3}{x^{2}} + 3x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !