There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{10xsqrt(1 + {x}^{2})}{1} + 5{x}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 10xsqrt(x^{2} + 1) + 5x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 10xsqrt(x^{2} + 1) + 5x^{2}\right)}{dx}\\=&10sqrt(x^{2} + 1) + \frac{10x(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 5*2x\\=&10sqrt(x^{2} + 1) + \frac{10x^{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 10x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !