Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{(2{x}^{2} + cos(x)cos(x))}^{x}}^{-2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (2x^{2} + cos^{2}(x))^{(-2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (2x^{2} + cos^{2}(x))^{(-2x)}\right)}{dx}\\=&((2x^{2} + cos^{2}(x))^{(-2x)}((-2)ln(2x^{2} + cos^{2}(x)) + \frac{(-2x)(2*2x + -2cos(x)sin(x))}{(2x^{2} + cos^{2}(x))}))\\=&-2(2x^{2} + cos^{2}(x))^{(-2x)}ln(2x^{2} + cos^{2}(x)) + \frac{4x(2x^{2} + cos^{2}(x))^{(-2x)}sin(x)cos(x)}{(2x^{2} + cos^{2}(x))} - \frac{8x^{2}(2x^{2} + cos^{2}(x))^{(-2x)}}{(2x^{2} + cos^{2}(x))}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return