There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(1 - {x}^{2})}{(1 + 2{x}^{2} + {x}^{4})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x^{2}}{(2x^{2} + x^{4} + 1)} + \frac{1}{(2x^{2} + x^{4} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x^{2}}{(2x^{2} + x^{4} + 1)} + \frac{1}{(2x^{2} + x^{4} + 1)}\right)}{dx}\\=& - (\frac{-(2*2x + 4x^{3} + 0)}{(2x^{2} + x^{4} + 1)^{2}})x^{2} - \frac{2x}{(2x^{2} + x^{4} + 1)} + (\frac{-(2*2x + 4x^{3} + 0)}{(2x^{2} + x^{4} + 1)^{2}})\\=&\frac{4x^{5}}{(2x^{2} + x^{4} + 1)^{2}} - \frac{2x}{(2x^{2} + x^{4} + 1)} - \frac{4x}{(2x^{2} + x^{4} + 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{4x^{5}}{(2x^{2} + x^{4} + 1)^{2}} - \frac{2x}{(2x^{2} + x^{4} + 1)} - \frac{4x}{(2x^{2} + x^{4} + 1)^{2}}\right)}{dx}\\=&4(\frac{-2(2*2x + 4x^{3} + 0)}{(2x^{2} + x^{4} + 1)^{3}})x^{5} + \frac{4*5x^{4}}{(2x^{2} + x^{4} + 1)^{2}} - 2(\frac{-(2*2x + 4x^{3} + 0)}{(2x^{2} + x^{4} + 1)^{2}})x - \frac{2}{(2x^{2} + x^{4} + 1)} - 4(\frac{-2(2*2x + 4x^{3} + 0)}{(2x^{2} + x^{4} + 1)^{3}})x - \frac{4}{(2x^{2} + x^{4} + 1)^{2}}\\=&\frac{-32x^{6}}{(2x^{2} + x^{4} + 1)^{3}} - \frac{32x^{8}}{(2x^{2} + x^{4} + 1)^{3}} + \frac{28x^{4}}{(2x^{2} + x^{4} + 1)^{2}} + \frac{8x^{2}}{(2x^{2} + x^{4} + 1)^{2}} + \frac{32x^{2}}{(2x^{2} + x^{4} + 1)^{3}} + \frac{32x^{4}}{(2x^{2} + x^{4} + 1)^{3}} - \frac{4}{(2x^{2} + x^{4} + 1)^{2}} - \frac{2}{(2x^{2} + x^{4} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !