There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 + {x}^{2} + {y}^{2})}^{(xy)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} + y^{2} + 1)^{(yx)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} + y^{2} + 1)^{(yx)}\right)}{dx}\\=&((x^{2} + y^{2} + 1)^{(yx)}((y)ln(x^{2} + y^{2} + 1) + \frac{(yx)(2x + 0 + 0)}{(x^{2} + y^{2} + 1)}))\\=&y(x^{2} + y^{2} + 1)^{(yx)}ln(x^{2} + y^{2} + 1) + \frac{2yx^{2}(x^{2} + y^{2} + 1)^{(yx)}}{(x^{2} + y^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !