Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (sqrt(x) + 2)({x}^{(\frac{-1}{2})} + 3)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(x)}{x^{\frac{1}{2}}} + 3sqrt(x) + \frac{2}{x^{\frac{1}{2}}} + 6\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(x)}{x^{\frac{1}{2}}} + 3sqrt(x) + \frac{2}{x^{\frac{1}{2}}} + 6\right)}{dx}\\=&\frac{\frac{-1}{2}sqrt(x)}{x^{\frac{3}{2}}} + \frac{\frac{1}{2}}{x^{\frac{1}{2}}(x)^{\frac{1}{2}}} + \frac{3*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{2*\frac{-1}{2}}{x^{\frac{3}{2}}} + 0\\=&\frac{-sqrt(x)}{2x^{\frac{3}{2}}} + \frac{1}{2x} + \frac{3}{2x^{\frac{1}{2}}} - \frac{1}{x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return