There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2} + 17)({x}^{3} - 3x + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} + 14x^{3} + x^{2} - 51x + 17\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} + 14x^{3} + x^{2} - 51x + 17\right)}{dx}\\=&5x^{4} + 14*3x^{2} + 2x - 51 + 0\\=&5x^{4} + 42x^{2} + 2x - 51\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !