There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ p{i}^{p}{{i}^{x}}^{({x}^{p}i)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = p{i}^{p}{{i}^{x}}^{(i{x}^{p})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( p{i}^{p}{{i}^{x}}^{(i{x}^{p})}\right)}{dx}\\=&p({i}^{p}((0)ln(i) + \frac{(p)(0)}{(i)})){{i}^{x}}^{(i{x}^{p})} + p{i}^{p}({{i}^{x}}^{(i{x}^{p})}((i({x}^{p}((0)ln(x) + \frac{(p)(1)}{(x)})))ln({i}^{x}) + \frac{(i{x}^{p})(({i}^{x}((1)ln(i) + \frac{(x)(0)}{(i)})))}{({i}^{x})}))\\=&\frac{p^{2}i{x}^{p}{{i}^{x}}^{(i{x}^{p})}{i}^{p}ln({i}^{x})}{x} + pi{x}^{p}{{i}^{x}}^{(i{x}^{p})}{i}^{p}ln(i)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !