Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ xxx + xsin(xxxxx)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsin(x^{5}) + x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(x^{5}) + x^{3}\right)}{dx}\\=&sin(x^{5}) + xcos(x^{5})*5x^{4} + 3x^{2}\\=&sin(x^{5}) + 5x^{5}cos(x^{5}) + 3x^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sin(x^{5}) + 5x^{5}cos(x^{5}) + 3x^{2}\right)}{dx}\\=&cos(x^{5})*5x^{4} + 5*5x^{4}cos(x^{5}) + 5x^{5}*-sin(x^{5})*5x^{4} + 3*2x\\=&30x^{4}cos(x^{5}) - 25x^{9}sin(x^{5}) + 6x\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 30x^{4}cos(x^{5}) - 25x^{9}sin(x^{5}) + 6x\right)}{dx}\\=&30*4x^{3}cos(x^{5}) + 30x^{4}*-sin(x^{5})*5x^{4} - 25*9x^{8}sin(x^{5}) - 25x^{9}cos(x^{5})*5x^{4} + 6\\=&120x^{3}cos(x^{5}) - 375x^{8}sin(x^{5}) - 125x^{13}cos(x^{5}) + 6\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 120x^{3}cos(x^{5}) - 375x^{8}sin(x^{5}) - 125x^{13}cos(x^{5}) + 6\right)}{dx}\\=&120*3x^{2}cos(x^{5}) + 120x^{3}*-sin(x^{5})*5x^{4} - 375*8x^{7}sin(x^{5}) - 375x^{8}cos(x^{5})*5x^{4} - 125*13x^{12}cos(x^{5}) - 125x^{13}*-sin(x^{5})*5x^{4} + 0\\=&360x^{2}cos(x^{5}) - 3600x^{7}sin(x^{5}) - 3500x^{12}cos(x^{5}) + 625x^{17}sin(x^{5})\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return