There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2} - 1)({x}^{2} - 4)({x}^{2} - 9)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{6} - 14x^{4} + 49x^{2} - 36\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{6} - 14x^{4} + 49x^{2} - 36\right)}{dx}\\=&6x^{5} - 14*4x^{3} + 49*2x + 0\\=&6x^{5} - 56x^{3} + 98x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !