There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1.536 + 0.64x - 2)}^{2} + {(1.536 + 0.64x - 2*0.696 - 2*0.576x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.4096x^{2} - 0.29696x - 0.29696x + 0.4096x^{2} - 0.73728x^{2} + 0.0921600000000001x - 0.73728x^{2} + 1.327104x^{2} - 0.165888x + 0.0921600000000001x - 0.165888x + 0.236032\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.4096x^{2} - 0.29696x - 0.29696x + 0.4096x^{2} - 0.73728x^{2} + 0.0921600000000001x - 0.73728x^{2} + 1.327104x^{2} - 0.165888x + 0.0921600000000001x - 0.165888x + 0.236032\right)}{dx}\\=&0.4096*2x - 0.29696 - 0.29696 + 0.4096*2x - 0.73728*2x + 0.0921600000000001 - 0.73728*2x + 1.327104*2x - 0.165888 + 0.0921600000000001 - 0.165888 + 0\\=&0.8192x + 0.8192x - 1.47456x - 1.47456x + 2.654208x - 0.741376\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !