There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{4}(12ln(x) - 7)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 12x^{4}ln(x) - 7x^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 12x^{4}ln(x) - 7x^{4}\right)}{dx}\\=&12*4x^{3}ln(x) + \frac{12x^{4}}{(x)} - 7*4x^{3}\\=&48x^{3}ln(x) - 16x^{3}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 48x^{3}ln(x) - 16x^{3}\right)}{dx}\\=&48*3x^{2}ln(x) + \frac{48x^{3}}{(x)} - 16*3x^{2}\\=&144x^{2}ln(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !