There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{7}^{2{x}^{2} + 5}{\frac{1}{(x - 4)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{log_{7}^{2x^{2} + 5}}{(x - 4)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{log_{7}^{2x^{2} + 5}}{(x - 4)^{2}}\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x - 4)^{3}})log_{7}^{2x^{2} + 5} + \frac{(\frac{(\frac{(2*2x + 0)}{(2x^{2} + 5)} - \frac{(0)log_{7}^{2x^{2} + 5}}{(7)})}{(ln(7))})}{(x - 4)^{2}}\\=&\frac{-2log_{7}^{2x^{2} + 5}}{(x - 4)^{3}} + \frac{4x}{(x - 4)^{2}(2x^{2} + 5)ln(7)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !