Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{x} + {e^{x}}^{(e + p{i}^{p}i)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{x} + {e^{x}}^{(e + pi{i}^{p})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{x} + {e^{x}}^{(e + pi{i}^{p})}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + ({e^{x}}^{(e + pi{i}^{p})}((0 + pi({i}^{p}((0)ln(i) + \frac{(p)(0)}{(i)})))ln(e^{x}) + \frac{(e + pi{i}^{p})(e^{x})}{(e^{x})}))\\=&{x}^{x}ln(x) + {e^{x}}^{(e + pi{i}^{p})}e + {x}^{x} + pi{i}^{p}{e^{x}}^{(e + pi{i}^{p})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return