There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 71.5169(1 - {e}^{(0.05752(x + 0.175))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 71.5169{e}^{(0.05752x + 0.010066)} + 71.5169\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 71.5169{e}^{(0.05752x + 0.010066)} + 71.5169\right)}{dx}\\=& - 71.5169({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})) + 0\\=& - 4.113652088{e}^{(0.05752x + 0.010066)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !