There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({2}^{(\frac{(n - 1)}{2})})(\frac{(n - 1)}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}n{2}^{(\frac{1}{2}n - \frac{1}{2})} - \frac{1}{2} * {2}^{(\frac{1}{2}n - \frac{1}{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}n{2}^{(\frac{1}{2}n - \frac{1}{2})} - \frac{1}{2} * {2}^{(\frac{1}{2}n - \frac{1}{2})}\right)}{dx}\\=&\frac{1}{2}n({2}^{(\frac{1}{2}n - \frac{1}{2})}((0 + 0)ln(2) + \frac{(\frac{1}{2}n - \frac{1}{2})(0)}{(2)})) - \frac{1}{2}({2}^{(\frac{1}{2}n - \frac{1}{2})}((0 + 0)ln(2) + \frac{(\frac{1}{2}n - \frac{1}{2})(0)}{(2)}))\\=&\frac{0}{8}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !