Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{10}^{a{x}^{(1 - \frac{n}{2})}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{10}^{a{x}^{(\frac{-1}{2}n + 1)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{10}^{a{x}^{(\frac{-1}{2}n + 1)}}\right)}{dx}\\=&(\frac{(\frac{(a({x}^{(\frac{-1}{2}n + 1)}((0 + 0)ln(x) + \frac{(\frac{-1}{2}n + 1)(1)}{(x)})))}{(a{x}^{(\frac{-1}{2}n + 1)})} - \frac{(0)log_{10}^{a{x}^{(\frac{-1}{2}n + 1)}}}{(10)})}{(ln(10))})\\=&\frac{-n{x}^{(-n + 2)}}{2xln(10)} + \frac{{x}^{(-n + 2)}}{xln(10)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return