There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(x - d - a + 1)}^{2}}{(x + a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x + a)} - \frac{2dx}{(x + a)} - \frac{2ax}{(x + a)} + \frac{2x}{(x + a)} + \frac{2da}{(x + a)} + \frac{d^{2}}{(x + a)} - \frac{2d}{(x + a)} + \frac{a^{2}}{(x + a)} - \frac{2a}{(x + a)} + \frac{1}{(x + a)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x + a)} - \frac{2dx}{(x + a)} - \frac{2ax}{(x + a)} + \frac{2x}{(x + a)} + \frac{2da}{(x + a)} + \frac{d^{2}}{(x + a)} - \frac{2d}{(x + a)} + \frac{a^{2}}{(x + a)} - \frac{2a}{(x + a)} + \frac{1}{(x + a)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + a)^{2}})x^{2} + \frac{2x}{(x + a)} - 2(\frac{-(1 + 0)}{(x + a)^{2}})dx - \frac{2d}{(x + a)} - 2(\frac{-(1 + 0)}{(x + a)^{2}})ax - \frac{2a}{(x + a)} + 2(\frac{-(1 + 0)}{(x + a)^{2}})x + \frac{2}{(x + a)} + 2(\frac{-(1 + 0)}{(x + a)^{2}})da + 0 + (\frac{-(1 + 0)}{(x + a)^{2}})d^{2} + 0 - 2(\frac{-(1 + 0)}{(x + a)^{2}})d + 0 + (\frac{-(1 + 0)}{(x + a)^{2}})a^{2} + 0 - 2(\frac{-(1 + 0)}{(x + a)^{2}})a + 0 + (\frac{-(1 + 0)}{(x + a)^{2}})\\=&\frac{-x^{2}}{(x + a)^{2}} + \frac{2x}{(x + a)} + \frac{2dx}{(x + a)^{2}} - \frac{2da}{(x + a)^{2}} + \frac{2ax}{(x + a)^{2}} - \frac{2a}{(x + a)} - \frac{2x}{(x + a)^{2}} - \frac{2d}{(x + a)} - \frac{d^{2}}{(x + a)^{2}} + \frac{2d}{(x + a)^{2}} - \frac{a^{2}}{(x + a)^{2}} + \frac{2a}{(x + a)^{2}} - \frac{1}{(x + a)^{2}} + \frac{2}{(x + a)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !