Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2} + 1){e}^{(tx)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e}^{(tx)} + {e}^{(tx)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{e}^{(tx)} + {e}^{(tx)}\right)}{dx}\\=&2x{e}^{(tx)} + x^{2}({e}^{(tx)}((t)ln(e) + \frac{(tx)(0)}{(e)})) + ({e}^{(tx)}((t)ln(e) + \frac{(tx)(0)}{(e)}))\\=&2x{e}^{(tx)} + tx^{2}{e}^{(tx)} + t{e}^{(tx)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return