There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({2}^{x})}{(x - 3)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{2}^{x}}{(x - 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{2}^{x}}{(x - 3)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 3)^{2}}){2}^{x} + \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{(x - 3)}\\=&\frac{{2}^{x}ln(2)}{(x - 3)} - \frac{{2}^{x}}{(x - 3)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !