There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin({sin(x)}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin({sin(x)}^{\frac{1}{2}})\right)}{dx}\\=&(\frac{(({sin(x)}^{\frac{1}{2}}((0)ln(sin(x)) + \frac{(\frac{1}{2})(cos(x))}{(sin(x))})))}{((1 - ({sin(x)}^{\frac{1}{2}})^{2})^{\frac{1}{2}})})\\=&\frac{cos(x)}{2(-sin(x) + 1)^{\frac{1}{2}}sin^{\frac{1}{2}}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !