There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2 - 2xx){\frac{1}{(1 - x + xx)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2x^{2}}{(-x + x^{2} + 1)^{2}} + \frac{2}{(-x + x^{2} + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2x^{2}}{(-x + x^{2} + 1)^{2}} + \frac{2}{(-x + x^{2} + 1)^{2}}\right)}{dx}\\=& - 2(\frac{-2(-1 + 2x + 0)}{(-x + x^{2} + 1)^{3}})x^{2} - \frac{2*2x}{(-x + x^{2} + 1)^{2}} + 2(\frac{-2(-1 + 2x + 0)}{(-x + x^{2} + 1)^{3}})\\=&\frac{8x^{3}}{(-x + x^{2} + 1)^{3}} - \frac{4x^{2}}{(-x + x^{2} + 1)^{3}} - \frac{4x}{(-x + x^{2} + 1)^{2}} - \frac{8x}{(-x + x^{2} + 1)^{3}} + \frac{4}{(-x + x^{2} + 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !