Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2 - 2xx)}{(1 - x + xx)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2x^{2}}{(-x + x^{2} + 1)} + \frac{2}{(-x + x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2x^{2}}{(-x + x^{2} + 1)} + \frac{2}{(-x + x^{2} + 1)}\right)}{dx}\\=& - 2(\frac{-(-1 + 2x + 0)}{(-x + x^{2} + 1)^{2}})x^{2} - \frac{2*2x}{(-x + x^{2} + 1)} + 2(\frac{-(-1 + 2x + 0)}{(-x + x^{2} + 1)^{2}})\\=&\frac{4x^{3}}{(-x + x^{2} + 1)^{2}} - \frac{2x^{2}}{(-x + x^{2} + 1)^{2}} - \frac{4x}{(-x + x^{2} + 1)} - \frac{4x}{(-x + x^{2} + 1)^{2}} + \frac{2}{(-x + x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return