Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(3(y - x))}{(z - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3y}{(z - x)} - \frac{3x}{(z - x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3y}{(z - x)} - \frac{3x}{(z - x)}\right)}{dx}\\=&3(\frac{-(0 - 1)}{(z - x)^{2}})y + 0 - 3(\frac{-(0 - 1)}{(z - x)^{2}})x - \frac{3}{(z - x)}\\=&\frac{3y}{(z - x)^{2}} - \frac{3x}{(z - x)^{2}} - \frac{3}{(z - x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return