Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{3{(s - 2x)}^{3}}{64} - s + 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{9}{32}s^{2}x + \frac{9}{16}sx^{2} + \frac{3}{64}s^{3} - \frac{3}{8}x^{3} - s + 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{9}{32}s^{2}x + \frac{9}{16}sx^{2} + \frac{3}{64}s^{3} - \frac{3}{8}x^{3} - s + 2x\right)}{dx}\\=& - \frac{9}{32}s^{2} + \frac{9}{16}s*2x + 0 - \frac{3}{8}*3x^{2} + 0 + 2\\=&\frac{9sx}{8} - \frac{9s^{2}}{32} - \frac{9x^{2}}{8} + 2\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return