There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -(ln(\frac{((e^{-1.3121}x) - 1)}{((e^{-1.3121}) - 1)}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -ln(\frac{xe^{-1.3121}}{(e^{-1.3121} - 1)} - \frac{1}{(e^{-1.3121} - 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -ln(\frac{xe^{-1.3121}}{(e^{-1.3121} - 1)} - \frac{1}{(e^{-1.3121} - 1)})\right)}{dx}\\=&\frac{-((\frac{-(e^{-1.3121}*0 + 0)}{(e^{-1.3121} - 1)^{2}})xe^{-1.3121} + \frac{e^{-1.3121}}{(e^{-1.3121} - 1)} + \frac{xe^{-1.3121}*0}{(e^{-1.3121} - 1)} - (\frac{-(e^{-1.3121}*0 + 0)}{(e^{-1.3121} - 1)^{2}}))}{(\frac{xe^{-1.3121}}{(e^{-1.3121} - 1)} - \frac{1}{(e^{-1.3121} - 1)})}\\=&\frac{-e^{-1.3121}}{(\frac{xe^{-1.3121}}{(e^{-1.3121} - 1)} - \frac{1}{(e^{-1.3121} - 1)})(e^{-1.3121} - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !