There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {ln(1 - \frac{cos(x)}{1} + cos(t))}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln^{4}(-cos(x) + cos(t) + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln^{4}(-cos(x) + cos(t) + 1)\right)}{dx}\\=&\frac{4ln^{3}(-cos(x) + cos(t) + 1)(--sin(x) + -sin(t)*0 + 0)}{(-cos(x) + cos(t) + 1)}\\=&\frac{4ln^{3}(-cos(x) + cos(t) + 1)sin(x)}{(-cos(x) + cos(t) + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !