Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{A}{((1 - n){(x - a)}^{(n - 1)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{A}{((x - a)^{(n - 1)} - n(x - a)^{(n - 1)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{A}{((x - a)^{(n - 1)} - n(x - a)^{(n - 1)})}\right)}{dx}\\=&(\frac{-(((x - a)^{(n - 1)}((0 + 0)ln(x - a) + \frac{(n - 1)(1 + 0)}{(x - a)})) - n((x - a)^{(n - 1)}((0 + 0)ln(x - a) + \frac{(n - 1)(1 + 0)}{(x - a)})))}{((x - a)^{(n - 1)} - n(x - a)^{(n - 1)})^{2}})A + 0\\=&\frac{-2An(x - a)^{(n - 1)}}{((x - a)^{(n - 1)} - n(x - a)^{(n - 1)})^{2}(x - a)} + \frac{A(x - a)^{(n - 1)}}{((x - a)^{(n - 1)} - n(x - a)^{(n - 1)})^{2}(x - a)} + \frac{An^{2}(x - a)^{(n - 1)}}{((x - a)^{(n - 1)} - n(x - a)^{(n - 1)})^{2}(x - a)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return