There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} - 3x - 5)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{8} - 12x^{7} + 34x^{6} + 72x^{5} - 309x^{4} - 360x^{3} + 850x^{2} + 1500x + 625\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{8} - 12x^{7} + 34x^{6} + 72x^{5} - 309x^{4} - 360x^{3} + 850x^{2} + 1500x + 625\right)}{dx}\\=&8x^{7} - 12*7x^{6} + 34*6x^{5} + 72*5x^{4} - 309*4x^{3} - 360*3x^{2} + 850*2x + 1500 + 0\\=&8x^{7} - 84x^{6} + 204x^{5} + 360x^{4} - 1236x^{3} - 1080x^{2} + 1700x + 1500\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !