There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {ln(2t + 1)}^{7}{\frac{1}{(3y - 1)}}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln^{7}(2t + 1)}{(3y - 1)^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln^{7}(2t + 1)}{(3y - 1)^{4}}\right)}{dx}\\=&(\frac{-4(0 + 0)}{(3y - 1)^{5}})ln^{7}(2t + 1) + \frac{7ln^{6}(2t + 1)(0 + 0)}{(3y - 1)^{4}(2t + 1)}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !