There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{x}{(3 - {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(-x^{2} + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(-x^{2} + 3)}\right)}{dx}\\=&(\frac{-(-2x + 0)}{(-x^{2} + 3)^{2}})x + \frac{1}{(-x^{2} + 3)}\\=&\frac{2x^{2}}{(-x^{2} + 3)^{2}} + \frac{1}{(-x^{2} + 3)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x^{2}}{(-x^{2} + 3)^{2}} + \frac{1}{(-x^{2} + 3)}\right)}{dx}\\=&2(\frac{-2(-2x + 0)}{(-x^{2} + 3)^{3}})x^{2} + \frac{2*2x}{(-x^{2} + 3)^{2}} + (\frac{-(-2x + 0)}{(-x^{2} + 3)^{2}})\\=&\frac{8x^{3}}{(-x^{2} + 3)^{3}} + \frac{6x}{(-x^{2} + 3)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !