There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({n}^{4} - n)*5{n}^{(\frac{9}{2})}}{(1 - n)}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{5n^{\frac{17}{2}}}{(-n + 1)} - \frac{5n^{\frac{11}{2}}}{(-n + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{5n^{\frac{17}{2}}}{(-n + 1)} - \frac{5n^{\frac{11}{2}}}{(-n + 1)}\right)}{dn}\\=&5(\frac{-(-1 + 0)}{(-n + 1)^{2}})n^{\frac{17}{2}} + \frac{5*\frac{17}{2}n^{\frac{15}{2}}}{(-n + 1)} - 5(\frac{-(-1 + 0)}{(-n + 1)^{2}})n^{\frac{11}{2}} - \frac{5*\frac{11}{2}n^{\frac{9}{2}}}{(-n + 1)}\\=&\frac{5n^{\frac{17}{2}}}{(-n + 1)^{2}} + \frac{85n^{\frac{15}{2}}}{2(-n + 1)} - \frac{5n^{\frac{11}{2}}}{(-n + 1)^{2}} - \frac{55n^{\frac{9}{2}}}{2(-n + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !