Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (cos(2)x)({{e}^{3}}^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e^{3}}^{x}cos(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e^{3}}^{x}cos(2)\right)}{dx}\\=&{e^{3}}^{x}cos(2) + x({e^{3}}^{x}((1)ln(e^{3}) + \frac{(x)(3e^{2}*0)}{(e^{3})}))cos(2) + x{e^{3}}^{x}*-sin(2)*0\\=&{e^{3}}^{x}cos(2) + 3x{e^{3}}^{x}cos(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return