Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{({(3x + 1)}^{2})}{5} + 3x)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{729}{125}x^{6} + \frac{5103}{125}x^{5} + \frac{486}{5}x^{4} + \frac{2079}{25}x^{3} + \frac{54}{5}x^{2} + \frac{63}{125}x + \frac{1}{125}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{729}{125}x^{6} + \frac{5103}{125}x^{5} + \frac{486}{5}x^{4} + \frac{2079}{25}x^{3} + \frac{54}{5}x^{2} + \frac{63}{125}x + \frac{1}{125}\right)}{dx}\\=&\frac{729}{125}*6x^{5} + \frac{5103}{125}*5x^{4} + \frac{486}{5}*4x^{3} + \frac{2079}{25}*3x^{2} + \frac{54}{5}*2x + \frac{63}{125} + 0\\=&\frac{4374x^{5}}{125} + \frac{5103x^{4}}{25} + \frac{1944x^{3}}{5} + \frac{6237x^{2}}{25} + \frac{108x}{5} + \frac{63}{125}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return